

AMEGO: An All-Sky Medium Energy Gamma ray Observatory

Instrumentation and Mission Overview

High Energy Space Environment Branch Space Science Division

Richard S. Woolf on behalf of the AMEGO team

January 10th 2018

AMEGO at the 231st AAS

http://asd.gsfc.nasa.gov/amego

Monday

Gamma-SIG at 11:00 am (MD Ballroom 3)

Tuesday

Poster Session at 5:30 pm

MeV Emission from Local Seyfert Active Galaxies (E. Mullin)

Wednesday

Talk at 10:00 am (Maryland B)

Polarization Observations of Fermi Blazars (B. Rani)

Wednesday

Splinter at 1:00 pm (National Harbor 8)

https://asd.gsfc.nasa.gov/conferences/aas2018/

Astrophysical Extremes and Life Cycles of the Elements (A. Harding, D. Hartmann, J. Racusin, A. Fabian, R. Woolf, & T. Linden)

Poster Session at 5:30 pm

Fermi-LAT VIP AGN (D. Thompson)

GRBs and GW Counterparts with AMEGO (J. Racusin)

Neutrino Astrophysics in the MeV Band (R. Ojha)

Thursday

iPoster Session at 9:00 am

Development and Testing of the Tracker (S. Griffin)

Poster Session at 5:30 pm

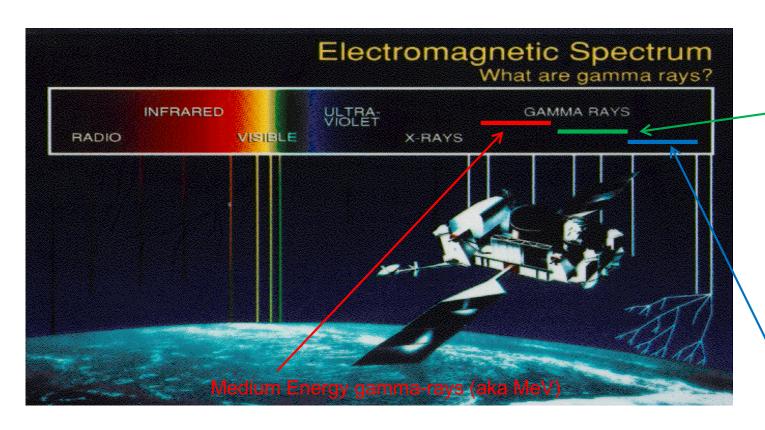
Exploring Dark Matter (R. Caputo)

Csl Calorimeter Development for AMEGO (J. E. Grove)

Friday

Talk at 2:10 pm (Potomac C)

Advancing the MeV Frontier with AMEGO (D. Hartmann)

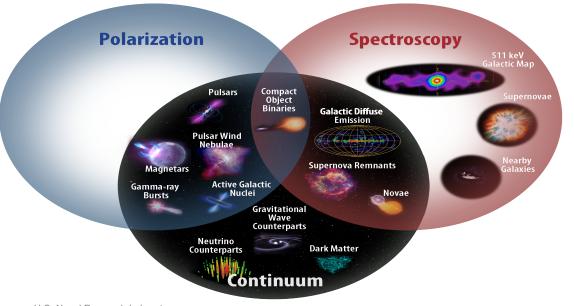

AMEGO Team*

NASA/GSFC, NRL, GWU, Clemson, UC Berkeley, SLAC, Wash U, UNH, NASA MSFC, UAH, USRA, OSU, UIUC, UNLV, U Del, Georgia Tech, UC Santa Cruz, Stanford, Argonne Nat'l Lab, UMD, UMBC, NWU, LANL, Univ. Padova/INFN, Rice, Universidad Autonoma de Madrid, University of Trieste, Hiroshima University.

*https://asd.gsfc.nasa.gov/amego/team.html

Gamma-ray Astrophysics

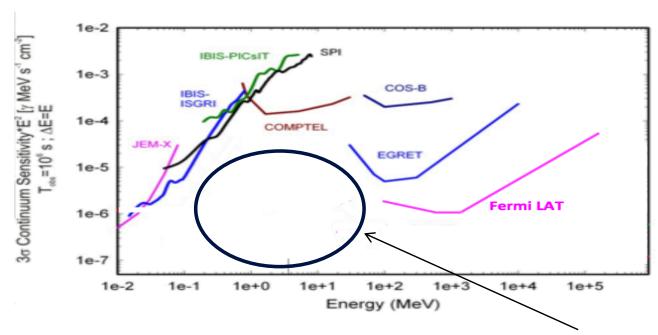
High Energy gamma-rays (aka GeV)



Very High Energy (VHE) gamma-rays (aka TeV)

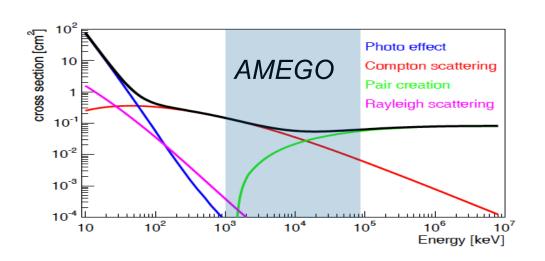
Why measure gamma rays?

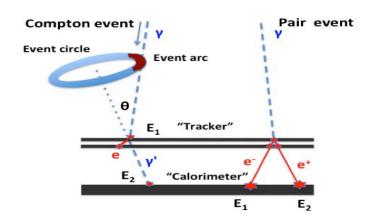
- High energy photons are produced in different physical processes and carry key information regarding the underlying process.
- Photons propagate through Universe unaffected by magnetic fields and continuous energy losses, allowing for direct measure of their origination point and spectrum at the source.



AMEGO will provide three new capabilities in MeV astrophysics:

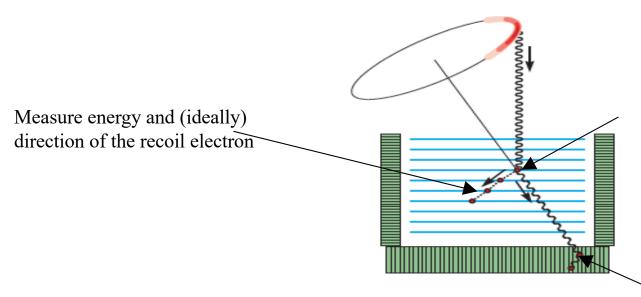
- Sensitive continuum spectral studies
- Polarization
- Nuclear line spectroscopy


MeV-GeV sensitivity



- There is potential discovery space in this so-called "MeV gap."
- What are the reasons for this gap?

Detecting MeV gamma rays



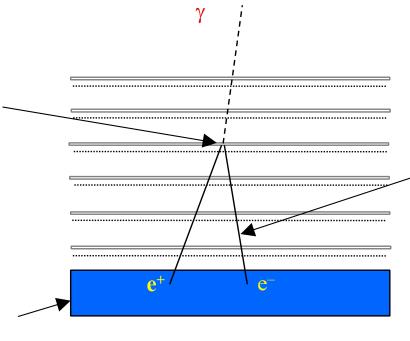
- Between 0.1 to ~100 MeV two interaction processes compete
 - Compton scattering and pair-production
- To fill the "MeV Gap" we need to consider both Compton scattering and Pair Production
- At low energy pair-production components (e⁺ and e⁻) suffer large multiple scattering, causing large uncertainty in the incident photon direction reconstruction

Compton Scattering

Incoming photon Compton scatters in the tracker

- Need to measure location of the Compton interaction and absorption of the scattered photon
- Energy of the recoil electron and scattered photon
- · For best reconstruction, also want to measure direction of recoil electron
- Scattered photons tend to scatter at right angles to the polarization vector

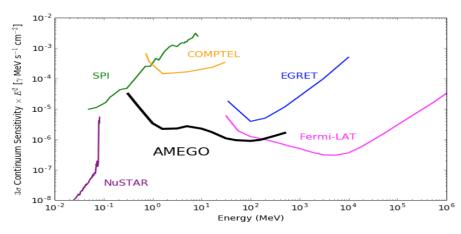
Scattered photon is absorbed in a position sensitive calorimeter


U.S. Naval Research Laboratory

AMEGO: Instrumentation | 8

Pair Production

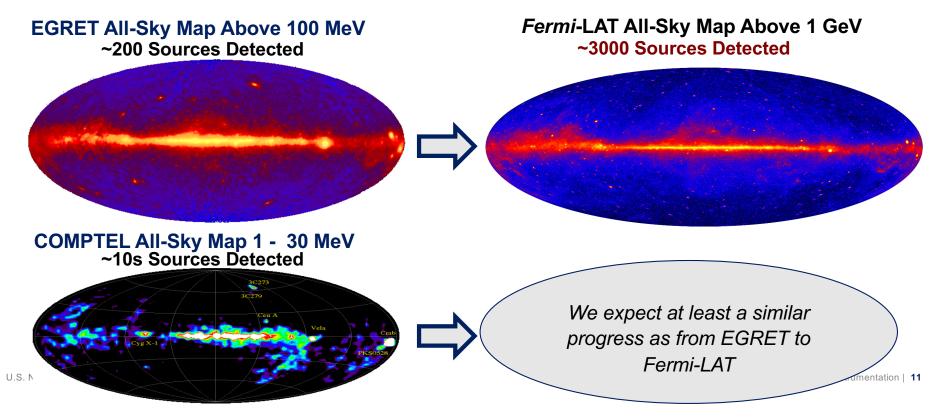
photon converts to an e+ e-



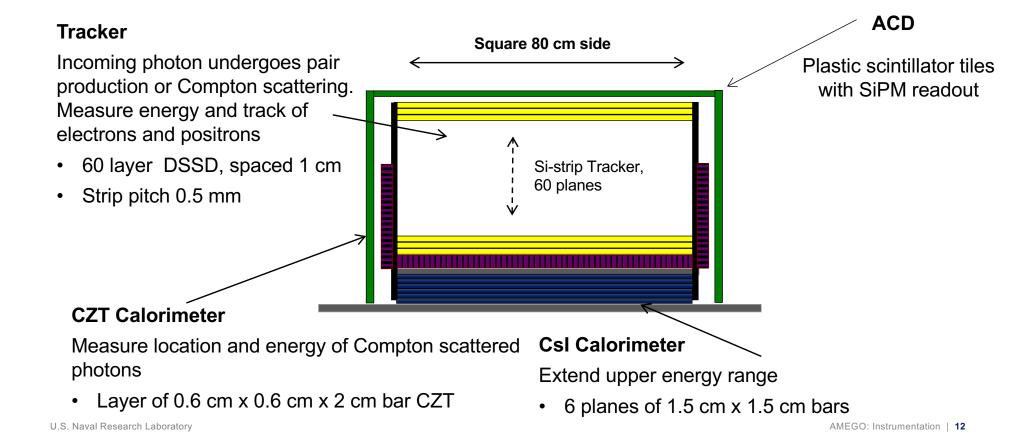

The directions of the charged particles are recorded by particle tracking detectors, the measured tracks point back to the source.

The energy is measured in the calorimeter

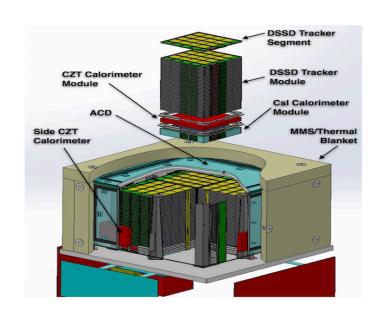
What do we want to build?



- AMEGO: All-Sky Medium Energy Gamma-ray Observatory
 - Compton-Pair space telescope
- Observing strategy: all-sky survey multiple times per day
- Wide-aperture instrument with Field-of-View 2.5 sr
- Sensitivity: 10 50x better than COMPTEL at 1 MeV
- Energy range: 200 keV -> 10 GeV
- Angular resolution: 5x better than Fermi LAT at 20-100 MeV
- Polarization sensitivity in 0.3 5 MeV range
- Well-understood and tested technologies with space heritage


What we can expect from AMEGO

• The MeV domain is one of the most underexplored windows on the Universe. From astrophysical jets and extreme physics of compact objects to a large population of unidentified objects, fundamental astrophysics questions can be addressed by a mission that opens a window into the MeV range.



AMEGO Concept

AMEGO Concept

Instrument concept:

- Optimized performance in 1 MeV 100 MeV range, with full range 0.2 MeV – 10 GeV
- Simplicity, long-term (~10 years) reliability, max use of already space-qualified technology
- Sensitive to both γ-ray interactions: pair production and Compton scattering
- Minimized amount of passive elements in detecting zone of the instrument (no passive γ-ray converters as in LAT)
- Use fine segmentation of all detecting elements to provide the best particle tracking and event identification

Mission concept:

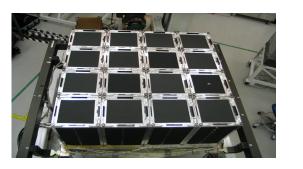
Orbit: circular

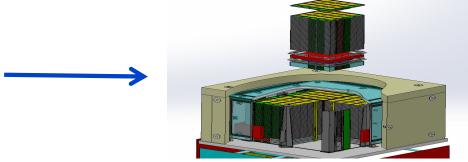
Altitude: 500 km

Inclination: 5-10°

Data downlink: Ka band/TDRSS

AMEGO: Instrumentation | 13




AMEGO Instrument Summary

Energy Range	0.2 MeV → 10 GeV
Effective Area	100 - 200 cm ² < 10 MeV, 200 - 1200 cm ² > 10 MeV
Angular Resolution	3° (1 MeV), 10° (10 MeV), ~1° at 1 GeV
Energy Resolution	<1% below 2 MeV; 1-5% at 2-100 MeV; ~10% at 1 GeV
Field-of-View	2.5 sr
Sensitivity (MeV s ⁻¹ cm ⁻²⁾	4x10 ⁻⁶ (1 MeV); 4.8x10 ⁻⁶ (10 MeV); 1x10 ⁻⁶ (100 MeV)
Dimensions	1 m x 1 m x 0.7 m (sensitive volume)
Mass	<1000 kg (science payload)
Power	<1000 W (science payload)

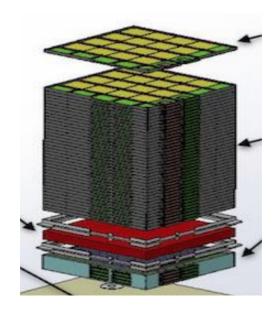
From Fermi-LAT to AMEGO

AMEGO Tracker:

- No conversion foils -> reduce multiple scattering
- No interior towers -> avoids technical challenges in electronics mechanical design to minimize tower spacing
- Spectroscopy readout of Si tracker (for energy measurement)
- Double-sided Silicon strip detectors (measures x- and y- coordinates, lower energy threshold)
- Minimal passive material inside the towers

AMEGO Calorimeter

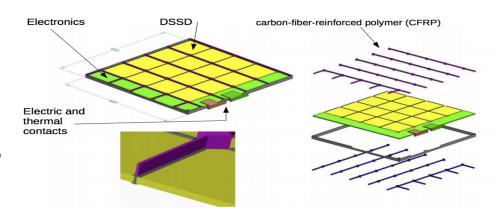
- Added CZT calorimeter for more precise position and energy measurement of scattered Compton photon
- Csl read out with SiPM -> better position and energy resolution, lower energy threshold


AMEGO Subsystems

- Silicon Tracker
- CZT Calorimeter
- Csl Calorimeter
- Anti-coincidence detector (ACD)

Silicon Tracker

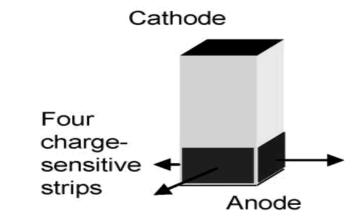
- Using double-sided silicon strip detectors (DSSD).
- Design: Four towers comprising 60 layers of a 4x4 daisy-chained DSSDs
- Each DSSD wafer 10 cm x 10 cm
- Electronics on the edges
- Compton requirements:
 - DSSDs required for position measurement of Compton scatter
 - Low-energy Compton electrons may not penetrate two-single sided detectors
 - Spectroscopy readout of each strip to measure energy

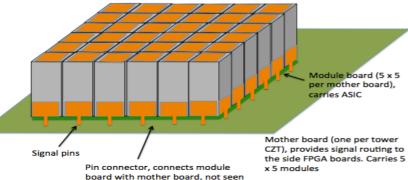


Si Tracker

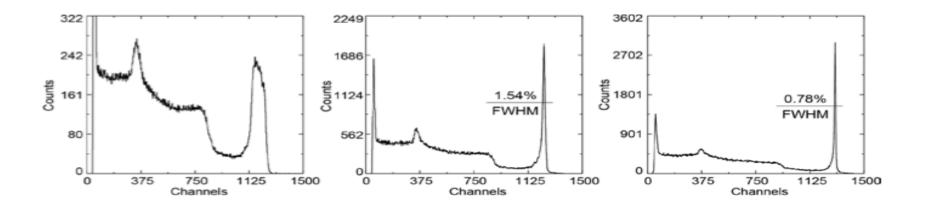
See iPoster (Thursday 9A): Development and Testing of the Si Tracker (S. Griffin)

- Daisy-chaining four DSSDs may produce too much noise due to parasitic capacitance.
- Affects detector performance, especially at low energies.
- Upcoming tests with 7-element "L-shape" prototype:
 - Proxy for a 4x4 segment
 - Can measure parasitic capacitance and approximates the noise of a 4x4 layer.
 - Position & energy resolution using radioactive sources (critical to event reconstruction systematics).

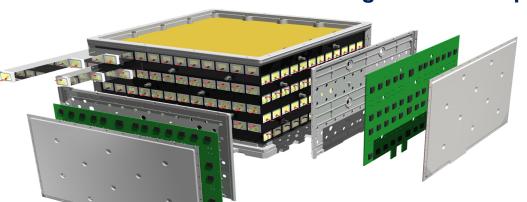


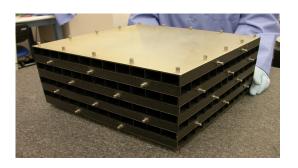

- Silicon production started at Micron
- 500 μm thick, 60 μm strip width, 192 strips per 10 cm side (500 μm)
- Significant amount of work went into developing the mask such that wafers could be daisy chained

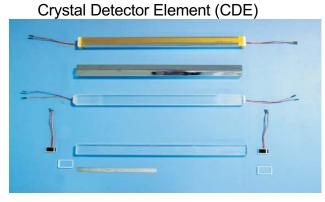
Cadmium Zinc Telluride (CZT)


- CZT is already a space-qualified semiconductor detector for X-rays and gamma rays, in use on Swift and NuSTAR.
- On AMEGO, CZT calorimeter positioned under and around all four sides of the Si tracker.
- Approach: attach charge-sensitive strips around the sides of the crystal near the anode, acting as a virtual Frisch grid to shield the anode. Amplitudes of the signals from the side strips determine xand y-coordinates of photon interaction. Drift time and cathode to anode ratio determine z-coordinate.
- Segmented calorimeter: 6x6 CZT bars, each 0.6 x 0.6 cm x 3 cm (~2 X₀)
- Expected energy resolution is <1% at 662 keV, 2-3% at 5 MeV
- Expected position resolution <0.5mm at <1 MeV, 2-3 mm at 5 MeV

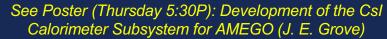
Energy resolution for CZT drift bar detector




- Results courtesy of BNL collaborators (A. Bolotnikov, et al., IEEE TNS, 59(4), 1544-1551, 2012).
- Left figure shows raw spectra of the ¹³⁷Cs measured with CZT bar
- Center figure corrected for drift time, right figure shows with 3-d correction applied.
- Initial results at NASA-GSFC shows similar promising results.


Csl(TI) Calorimeter

Leverage experience from LAT Calorimeter design and development



Carbon composite mechanical structure

Modular assembly

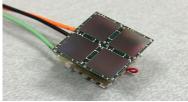
U.S. N. Naval-Research dalporatory

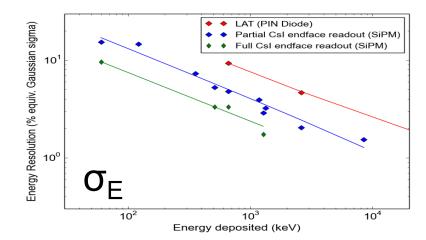
SiPM to PIN photodiode comparison

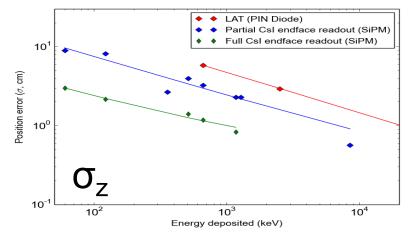
Compare to test data from Fermi LAT calorimeter development

Fermi LAT CDEs

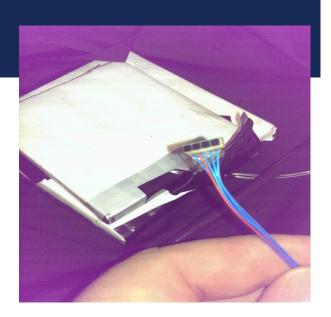
- 20x27x326 mm CsI(TI) crystal
- Dual PIN photodiode on both ends
 - 1 cm² and 0.25 cm² diode areas
- Tetratex diffusive wrap test


Test CDE


- 15x15x320 mm CsI(TI) crystal
 - (~1996 purchase from GLAST development)
- SiPM on both ends
 - One 6x6mm or 2x2 6x6mm array SensL C-series
- Tetratex diffusive wrap

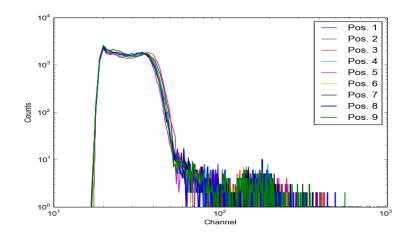

Conclusion – Replacing PIN with SiPM:

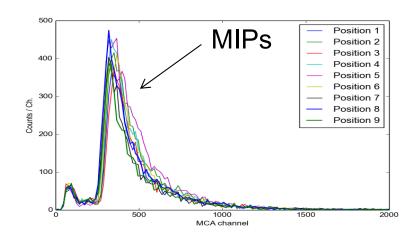
- Improves calorimetry for ~10-100 MeV pair telescope
- Enables ~1-30 MeV Compton telescope with modest channel count, macroscopic crystals



Anti-Coincidence Detector (ACD)

- Work currently underway at NRL (bottom) and NASA-GSFC (right)
- Testing SiPM readout of plastic scintillator sheet
 - Eljen (EJ) 200
 - NRL: 180 mm x 180 mm x 10 mm
- Wrapped white diffuse reflector on all sides, then with black cardboard/electrical tape.
- NASA-GSFC exploring the value of waveguides to improve light collection





ACD performance

- Top plot shows the NRL ACD with SiPM readout for collimated ¹³⁷Cs mapping out a 3x3 grid.
- Average channel of the ¹³⁷Cs Compton Edge (477 keV) demonstrates that the uniformity does not deviate by more than 5%.
- Measured minimum ionizing particles (MIPs) passing through the ACD plastic.
- Cosmic-ray muons provide 'free' source of high-energy particles, depositing ~1.5 MeV in 10-mm-thick plastic.
- Small chunk of plastic scintillator/PMT as a paddle and required coincidence between the paddle and the ACD plastic to trigger.

Future Work

- NASA APRA currently funding development and testing of the subsystems outlined: Si tracker (PI: J. McEnery, NASA-GSFC), CZT (D. Thompson, NASA-GSFC), and CsI calorimeter (PI: J. E. Grove, NRL).
- Prototyping/testing readout for CZT, daisy chained double-sided Si strip detectors, build and test CsI calorimeter with SiPM readout via ASIC.
- Developing prototype instrument for beam tests and balloon flight in 2018/2019
- Engineering study of full instrument/mission concept
- Robust resources and cost estimate
- Developing and communicating AMEGO science case
- Plan to submit white papers to the upcoming decadal survey

Acknowledgements

Work at NRL is sponsored by the Chief of Naval Research (CNR), NASA-APRA (NNH14ZDA001N-APRA), and NASA-APRA (NNH15ZDA001N-APRA)